Stable Configurations of Linear Subspaces and Quotient Coherent Sheaves
نویسنده
چکیده
(resp. <). This is Theorem 2.2, which generalizes Mumford’s Proposition 4.3 of [21], where he treated the case Gr(k, V ), and Dolgachev’s Theorem 11.1 of [2], where he treated the case of subspaces of V . An equivalent version of the above criterion is given in Theorem 2.2’ in terms of systems of ai-dimensional quotients of V ⊗ W , as points in Πmi=1 Gr(V ⊗ W, ai). This alternative formulation is necessary for the later application to quotient coherent sheaves.
منابع مشابه
Descent of Coherent Sheaves and Complexes to Geometric Invariant Theory Quotients
Fix a quasi-projective scheme X over a field of characteristic zero that is equipped with an action of a reductive algebraic group G. Fix a polarization H of X that linearizes the G-action. We give necessary and sufficient conditions for a G-equivariant coherent sheaf on X to descend to the GIT quotient X/G, or for a bounded-above complex of G-equivariant coherent sheaves on X to be G-equivaria...
متن کاملDescent of Coherent Sheaves and Complexes to Geometric Invariant Theory Quotients: Draft
Fix a quasi-projective scheme X over a field of characteristic zero that is equipped with an action of a reductive algebraic group G. Fix a polarization H of X that linearizes the G-action. We give necessary and sufficient conditions for a G-equivariant coherent sheaf on X to descend to the GIT quotient X/G, or for a bounded-above complex of G-equivariant coherent sheaves on X to be G-equivaria...
متن کاملCohomology of Coherent Sheaves and Series of Supernatural Bundles
We show that the cohomology table of any coherent sheaf on projective space is a convergent—but possibly infinite—sum of positive real multiples of the cohomology tables of what we call supernatural sheaves. Introduction Let K be a field, and let F be a coherent sheaf on P = P K . The cohomology table of F is the collection of numbers γ(F) = (γi,d) with γi,d = dimH (P,F(d)), which we think of a...
متن کاملThe Stable Derived Category of a Noetherian Scheme
For a noetherian scheme, we introduce its unbounded stable derived category. This leads to a recollement which reflects the passage from the bounded derived category of coherent sheaves to the quotient modulo the subcategory of perfect complexes. Some applications are included, for instance an analogue of maximal CohenMacaulay approximations, a construction of Tate cohomology, and an extension ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008